Digital Systems and Binary
 Numbers

Aziz Qaroush

What you will I Learn in this Course?

* Towards the end of this course, you should be able to:
\triangleleft Carry out arithmetic computation in various number systems
« Apply rules of Boolean algebra to simplify Boolean expressions
\diamond Translate truth tables into equivalent Boolean expressions and logic gate implementations and vice versa
\triangleleft Design efficient combinational and sequential logic circuit implementations from functional description of digital systems
\diamond Use software tools to simulate and verify the operation of logic circuits

1.1 Digital Systems

* Digital Computer
* Handheld Calculator
* Digital Watch

	3.1415927		
7	8		9
4	7	7	
4	5	6	$*$
1	2		$*$
	-	-	
0	-	$=$	+

Is it Worth the Effort?

* Absolutely!
* Digital circuits are employed in the design of:
\diamond Digital computers
\diamond Data communication
> Digital phones
\triangleleft Digital cameras
\triangleleft Digital TVs, etc.
* This course provides the fundamental concepts and the basic tools for the design of digital circuits and systems

How do Computers Represent Digits?

* Binary digits (0 and 1) are the simplest to represent
* Using electric voltage
\triangleleft Used in processors and digital circuits
\triangleleft High voltage $=1$, Low voltage $=0$
* Using electric charge

\diamond Used in memory cells
\diamond Charged memory cell $=1$, discharged memory cell $=0$
* Using magnetic field
\triangleleft Used in magnetic disks, magnetic polarity indicates 1 or 0
* Using light
\diamond Used in optical disks, optical lens can sense the light or not

Binary Numbers

* Each binary digit (called a bit) is either 1 or 0
* Bits have no inherent meaning, they can represent ...
\diamond Unsigned and signed integers
\diamond Fractions
\triangleleft Characters
» Images, sound, etc.
* Bit Numbering

\diamond Least significant bit (LSB) is rightmost (bit 0)
\triangleleft Most significant bit (MSB) is leftmost (bit 7 in an 8 -bit number)

Decimal Value of Binary Numbers

* Each bit represents a power of 2
* Every binary number is a sum of powers of 2
* Decimal Value $=\left(d_{n-1} \times 2^{n-1}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
$*$ Binary $(10011101)_{2}=2^{7}+2^{4}+2^{3}+2^{2}+1=157$

7	6	5	4	3	2	1	0
1	0	0	1	1	1	0	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Some common powers of 2

$\mathbf{2}^{\mathbf{n}}$	Decimal Value	$\mathbf{2}^{\mathbf{n}}$	Decimal Value
$2^{\mathbf{0}}$	1	2^{8}	256
2^{1}	2	2^{9}	512
2^{2}	4	2^{10}	1024
2^{3}	8	2^{11}	2048
2^{4}	16	2^{12}	4096
2^{5}	32	2^{13}	8192
2^{6}	64	2^{14}	16384
2^{7}	128	2^{15}	32768

Positional Number Systems

Different Representations of Natural Numbers
XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011_{2} Radix-2 or binary number (also positional)
Fixed-radix positional representation with \boldsymbol{n} digits
Number N in radix $r=\left(d_{n-1} d_{n-2} \ldots d_{1} d_{0}\right)_{r}$
N_{r} Value $=\mathrm{d}_{n-1} \times r^{n-1}+\mathrm{d}_{n-2} \times r^{n-2}+\ldots+\mathrm{d}_{1} \times r+\mathrm{d}_{0}$
Examples: $(11011)_{2}=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2+1=27$

$$
(2107)_{8}=2 \times 8^{3}+1 \times 8^{2}+0 \times 8+7=1095
$$

Convert Decimal to Binary

* Repeatedly divide the decimal integer by 2
* Each remainder is a binary digit in the translated value
* Example: Convert 37_{10} to Binary

Division	Quotient	Remainder	
37/2	18	1	least significant bit
18/2	9	0	$37=(100101)_{2}$
$9 / 2$	4	1	
4/2	2	0	
$2 / 2$	1	0	
1/2	0	1	most significant bit

Decimal to Binary Conversion

* $N=\left(d_{n-1} \times 2^{n-1}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
* Dividing N by 2 we first obtain
\diamond Quotient $_{1}=\left(d_{n-1} \times 2^{n-2}\right)+\ldots+\left(d_{2} \times 2\right)+d_{1}$
\diamond Remainder $_{1}=d_{0}$
\diamond Therefore, first remainder is least significant bit of binary number
* Dividing first quotient by 2 we first obtain
\diamond Quotient $_{2}=\left(d_{n-1} \times 2^{n-3}\right)+\ldots+\left(d_{3} \times 2\right)+d_{2}$
\diamond Remainder $_{2}=d_{1}$
* Repeat dividing quotient by 2
\diamond Stop when new quotient is equal to zero
\diamond Remainders are the bits from least to most significant bit

Popular Number Systems

* Binary Number System: Radix = 2
\diamond Only two digit values: 0 and 1
\triangleleft Numbers are represented as 0s and 1s
* Octal Number System: Radix = 8
\triangleleft Eight digit values: $0,1,2, \ldots, 7$
* Decimal Number System: Radix $=10$
\triangleleft Ten digit values: $0,1,2, \ldots, 9$
* Hexadecimal Number Systems: Radix = 16
\triangleleft Sixteen digit values: $0,1,2, \ldots, 9, A, B, \ldots, F$
$\triangleleft A=10, B=11, \ldots, F=15$
* Octal and Hexadecimal numbers can be converted easily to Binary and vice versa

Octal and Hexadecimal Numbers

* Octal = Radix 8
* Only eight digits: 0 to 7
* Digits 8 and 9 not used
* Hexadecimal = Radix 16
* 16 digits: 0 to 9 , A to F
* $A=10, B=11, \ldots, F=15$
* First 16 decimal values (0 to15) and their values in binary, octal and hex. Memorize table

Decimal Radix 10	Binary Radix 2	Octal Radix 8	Hex Radix 16
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Binary, Octal, and Hexadecimal

* Binary, Octal, and Hexadecimal are related:

Radix $16=2^{4}$ and Radix $8=2^{3}$

* Hexadecimal digit $=4$ bits and Octal digit $=3$ bits
* Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
* Example: Convert 32-bit number into octal and hex

3	5	3	0	5		5	2	3	6		2	4	Octal 32-bit binary Hexadecimal
11	0	01	00	0		10	1010	011	10	0	10	100	
E		B	1		6		A	7		9		4	

Converting Octal \& Hex to Decimal

* Octal to Decimal: $N_{8}=\left(d_{n-1} \times 8^{n-1}\right)+\ldots+\left(d_{1} \times 8\right)+d_{0}$
* Hex to Decimal: $N_{16}=\left(d_{n-1} \times 16^{n-1}\right)+\ldots+\left(d_{1} \times 16\right)+d_{0}$
* Examples:

$$
\begin{aligned}
& (7204)_{8}=\left(7 \times 8^{3}\right)+\left(2 \times 8^{2}\right)+(0 \times 8)+4=3716 \\
& (3 B A 4)_{16}=\left(3 \times 16^{3}\right)+\left(11 \times 16^{2}\right)+(10 \times 16)+4=15268
\end{aligned}
$$

Converting Decimal to Hexadecimal

* Repeatedly divide the decimal integer by 16
* Each remainder is a hex digit in the translated value
* Example: convert 422 to hexadecimal

Division	Quotient	Remainder
$422 / 16$	26	6
$26 / 16$	1	
$1 / 16$	0	

* To convert decimal to octal divide by 8 instead of 16

Important Properties

* How many possible digits can we have in Radix r? r digits: 0 to $r-1$
* What is the result of adding 1 to the largest digit in Radix r ? Since digit r is not represented, result is (10) $)_{r}$ in Radix r
Examples: $1_{2}+1=(10)_{2}$

$$
7_{8}+1=(10)_{8}
$$

$$
9_{10}+1=(10)_{10}
$$

$$
F_{16}+1=(10)_{16}
$$

* What is the largest value using 3 digits in Radix r ?

In binary: $(111)_{2}=2^{3}-1$
In octal: $(777)_{8}=8^{3}-1$ In decimal: $(999)_{10}=10^{3}-1$

In Radix r :
largest value $=r^{3}-1$

Important Properties - cont'd

* How many possible values can be represented ...

Using n binary digits?
Using n octal digits
Using n decimal digits?
Using n hexadecimal digits
Using n digits in Radix r ?
2^{n} values: 0 to $2^{n}-1$
8^{n} values: 0 to $8^{n}-1$
10^{n} values: 0 to $10^{n}-1$
16^{n} values: 0 to $16^{n}-1$
r^{n} values: 0 to r^{n-1}

Representing Fractions

* A number \boldsymbol{N}_{r} in radix \boldsymbol{r} can also have a fraction part:

$$
N_{r}=\underbrace{d_{n-1} d_{n-2} \ldots d_{1} d_{0}}_{\text {Integer Part }} \cdot \underbrace{d_{-1} d_{-2} \ldots d_{-m+1} d_{-m}}_{\text {Radix Point }} \quad 0 \leq d_{i}<r
$$

* The number \boldsymbol{N}_{r} represents the value:

$$
\begin{array}{rll}
N_{r}= & d_{n-1} \times r^{n-1}+\ldots+d_{1} \times r+d_{0}+ & \text { (Integer Part) } \\
& d_{-1} \times r^{-1}+d_{-2} \times r^{-2} \ldots+d_{-m} \times r^{-m} & \text { (Fraction Part) } \\
N_{r}= & \sum_{i=0}^{i=n-1} d_{i} \times r^{i}+\sum_{j=-m}^{j=-1} d_{j} \times r^{j}
\end{array}
$$

Examples of Numbers with Fractions

* $(2409.87)_{10}=2 \times 10^{3}+4 \times 10^{2}+9+8 \times 10^{-1}+7 \times 10^{-2}$
* $(1101.1001)_{2}=2^{3}+2^{2}+2^{0}+2^{-1}+2^{-4}=13.5625$
* $(703.64)_{8}$
$=7 \times 8^{2}+3+6 \times 8^{-1}+4 \times 8^{-2}=451.8125$
(A1F.8) ${ }_{16}$

$$
=10 \times 16^{2}+16+15+8 \times 16^{-1}=2591.5
$$

$*(423.1)_{5}$
$=4 \times 5^{2}+2 \times 5+3+5^{-1}=113.2$

* $(263.5)_{6}$

Digit 6 is NOT allowed in radix 6

Converting Decimal Fraction to Binary

* Convert $N=0.6875$ to Radix 2
* Solution: Multiply N by 2 repeatedly \& collect integer bits

Multiplication	New Fraction	Bit
$0.6875 \times 2=1.375$	0.375	1
$0.375 \times 2=0.75$	0.75	0
$0.75 \times 2=1.5$	0.5	1
$0.5 \times 2=1.0$	0.0	1

* Stop when new fraction $=0.0$, or when enough fraction bits are obtained
* Therefore, $N=0.6875=(0.1011)_{2}$
* Check $(0.1011)_{2}=2^{-1}+2^{-3}+2^{-4}=0.6875$

Converting Fraction to any Radix r

* To convert fraction N to any radix r

$$
N_{r}=\left(0 . d_{-1} d_{-2} \ldots d_{-m}\right)_{r}=d_{-1} \times r^{-1}+d_{-2} \times r^{-2} \ldots+d_{-m} \times r^{-m}
$$

* Multiply N by r to obtain d_{-1}

$$
N_{r} \times r=d_{-1}+d_{-2} \times r^{-1} \ldots+d_{-m} \times r^{-m+1}
$$

* The integer part is the digit d_{-1} in radix r
* The new fraction is $d_{-2} \times r^{-1} \ldots+d_{-m} \times r^{-m+1}$
* Repeat multiplying the new fractions by r to obtain $d_{-2} d_{-3} \ldots$
* Stop when new fraction becomes 0.0 or enough fraction digits are obtained

More Conversion Examples

* Convert $N=139.6875$ to Octal (Radix 8)
* Solution: $N=139+0.6875$ (split integer from fraction)
* The integer and fraction parts are converted separately

Division	Quotient	Remainder
$139 / 8$	17	3
$17 / 8$	2	1
$2 / 8$	0	2

Multiplication	New Fraction	Digit
$0.6875 \times 8=5.5$	0.5	5
$0.5 \times 8=4.0$	0.0	4

* Therefore, $139=(213)_{8}$ and $0.6875=(0.54)_{8}$
* Now, join the integer and fraction parts with radix point $N=139.6875=(213.54)_{8}$

Conversion Procedure to Radix r

* To convert decimal number N (with fraction) to radix r
* Convert the Integer Part
\checkmark Repeatedly divide the integer part of number N by the radix r and save the remainders. The integer digits in radix r are the remainders in reverse order of their computation. If radix $r>10$, then convert all remainders > 10 to digits $\mathrm{A}, \mathrm{B}, \ldots$ etc.
* Convert the Fractional Part
\diamond Repeatedly multiply the fraction of N by the radix r and save the integer digits that result. The fraction digits in radix r are the integer digits in order of their computation. If the radix $r>10$, then convert all digits > 10 to A, B, \ldots etc.
* Join the result together with the radix point

Simplified Conversions

* Converting fractions between Binary, Octal, and Hexadecimal can be simplified
* Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
* Group 4 bits into a hex digit or 3 bits into an octal digit
\leftarrow integer: right to left $-_$fraction: left to right \longrightarrow

7	2	6		1	3		2	4		7	4	5	2	Octal Binary Hexadecimal
111	10	1	0	01	011		010	10	0	11	10	101	01	
7	5		8		B	-	5		3		C	A		

* Use binary to convert between octal and hexadecimal

Important Properties of Fractions

* How many fractional values exist with m fraction bits? 2^{m} fractions, because each fraction bit can be 0 or 1
* What is the largest fraction value if m bits are used?

Largest fraction value $=2^{-1}+2^{-2}+\ldots+2^{-m}=1-2^{-m}$
Because if you add 2^{-m} to largest fraction you obtain 1

* In general, what is the largest fraction value if m fraction digits are used in radix r ?

Largest fraction value $=r^{-1}+r^{-2}+\ldots+r^{-m}=1-r^{-m}$
For decimal, largest fraction value $=1-10^{-m}$
For hexadecimal, largest fraction value $=1-16^{-m}$

Complements of Numbers

* Complements are used for simplifying the subtraction operation and for easy manipulation of certain logical rules and events
* Two types of complements for each base-r system:
- radix complements (r's complements)
- diminished radix complements (($r-1$)'s complements)
* Diminished radix complement
- Given a number N in base r having n digits, the ($r-1$)'s complement of N is defined as $\left(r^{n}-1\right)-N$

Diminished Radix Complements

* For decimal number, r=10, r-1=9, $n=6$
- 9's complement of $546700=999999-546700=453299$
- 9's complement of 012398 = 999999-012398 = 987601

For binary number, r=2, r-1 = 1, $n=7$

- 1 's complement of $1011000=1111111-1011000=$ 0100111
- 1's complement of 0101101 = 1111111-0101101 = 1010010

Radix Complements

* The r's complement of an n -digit number N is defined as
- ($r^{n}-N$, for $N \neq 0$ and 0 for $N=0$)
* Examples:

1) 10 's complement of $546700=1000000-546700=453300$
2) 10 's complement of $012398=1000000-012398=987602$
3) 2 's complement of $1011000=10000000-1011000=0101000$
4) 2 's complement of $0101101=10000000-0101101=1010011$
$\%$ The 2's complement can be derived by 1 's complement +1

* The complement of the complement restores the number to its original value
* If there is a radix point, the radix point is temporarily removed during the process, and restored in the same position afterwards

Subtraction with Complements

* Replace subtraction with addition
* $M_{r}-N_{r}$: 2'complement of $N_{r}=r^{n}-N$
- $M+\left(r^{n}-N\right)=M-N+r^{n}$
* If $\mathrm{M} \geq \mathrm{N}$, the end carry r^{n} is discarded, and the result is $\mathrm{M}-\mathrm{N}$
* If $M<N$, there is no end carry and the sum equals $r^{n}-(N-M)$. Take the r's complement if we obtain ($N-M$), which is $-(M-N)$

Examples

* E.g. using 10's comp do 72532-3250 72532
$+\underline{96750} \rightarrow 10$'s comp of 3250 169282

Answer $=69282$

* E.g. Using 10's comp do 3250-72532 03250
$+\underline{27468} \rightarrow$ 10's comp of 72532 $30718 \rightarrow$ no end carry
Answer $=-(10$'s comp of 30718) $=-69282$

Examples

* Example using 9's complement:
- do 72532-3250

```
72532
\(+\underline{96749} \rightarrow\) 9's comp of 3250
169281
\(+\quad 1 \rightarrow\) end around carry
```

69282

- do 3250-72532

$$
\begin{aligned}
& 03250 \\
&+ \underline{27467} \rightarrow \quad 9 \text { 's comp of } 72532 \\
& 30717 \rightarrow-(9 ' s \text { comp of } 30717)=-69282
\end{aligned}
$$

Examples

13-6

$00001101 \quad 2^{\prime}$ compl. of $6: 11111010$
00001101
-00000110
00000111

6-13
2' compl. of 13: 11110011
00000110
$\begin{array}{r}11110011 \\ \hline\end{array}$
11111001 (2^{\prime} compl. of 7)

Signed Numbers

* Several ways to represent a signed number
\triangleleft Sign-Magnitude
$\checkmark 1$'s complement
$\diamond 2$'s complement
* Divide the range of values into 2 equal parts
\diamond First part corresponds to the positive numbers (≥ 0)
\diamond Second part correspond to the negative numbers (<0)
* The 2's complement representation is widely used
\triangleleft Has many advantages over other representations

Sign-Magnitude Representation

* Independent representation of the sign and magnitude
* Leftmost bit is the sign bit: 0 is positive and 1 is negative
* Using n bits, largest represented magnitude $=2^{n-1}-1$

Sign-magnitude representation of +45
using 8 -bit register

0	0	1	0	1	1	0	1

Sign-magnitude representation of -45 using 8-bit register

1	0	1	0	1	1	0	1

Properties of Sign-Magnitude

* Two representations for zero: +0 and -0
* Symmetric range of represented values:

For n-bit register, range is from $-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$
For example using 8-bit register, range is -127 to +127

* Hard to implement addition and subtraction
\diamond Sign and magnitude parts have to processed independently
\diamond Sign bit should be examined to determine addition or subtraction Addition is converted into subtraction when adding numbers of different signs
\diamond Need a different circuit to perform addition and subtraction Increases the cost of the logic circuit

2's Complement Representation

* Almost all computers today use 2's complement to represent signed integers
* A simple definition for 2's complement:

Given a binary number N
The 2's complement of $N=1$'s complement of $N+1$

* Example: 2's complement of $(01101001)_{2}=$
$(10010110)_{2}+1=(10010111)_{2}$
* If N consists of n bits then

2 's complement of $N=2^{n}-N$

Computing the 2 's Complement

starting value	$00100100_{2}=+36$
step1: reverse the bits (1's complement)	11011011_{2}
step 2: add 1 to the value from step 1	$+\frac{1_{2}}{}$sum $=2$'s complement representation $11011100_{2}=-36$${ }^{2}=1$

2's complement of $11011100_{2}(-36)=00100011_{2}+1=00100100_{2}=+36$
The 2's complement of the 2's complement of N is equal to N
Another way to obtain the 2's complement:
Start at the least significant 1
Leave all the 0s to its right unchanged Complement all the bits to its left
Binary Value
$= 0 0 1 0 0 \longdiv { 1 0 0 \text { significant } 1 }$
$2^{\prime} \mathrm{s}$ Complement
$=11011000$

Binary Value
$= 0 0 1 0 0 \longdiv { 1 0 0 \text { significant } 1 }$
2's Complement
$=11011100$

Unsigned and Signed Value

* Positive numbers
« Signed value = Unsigned value
* Negative numbers
\diamond Signed value $=$ Unsigned value -2^{n}
$\diamond n=$ number of bits
* Negative weight for MSB
\diamond Another way to obtain the signed value is to assign a negative weight to most-significant bit

1	0	1	1	0	1	0	0
-128	64	32	16	8	4	2	1

$=-128+32+16+4=-76$

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
\ldots	\ldots	\ldots
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
\ldots	\ldots	\ldots
11111110	254	-2
11111111	255	-1

Properties of the 2's Complement

* The 2's complement of N is the negative of N
* The sum of N and 2's complement of N must be zero The final carry is ignored
* Consider the 8 -bit number $N=0010110 O_{2}=+44$
$-44=2$'s complement of $N=11010100_{2}$
$00101100_{2}+11010100_{2}=100000000_{2}$ (8-bit sum is 0)
\downarrow _ Ignore final carry
* In general: Sum of $N+2$'s complement of $N=2^{n}$ where 2^{n} is the final carry (1 followed by $n 0$'s)
* There is only one zero: 2's complement of $0=0$

Ranges of Unsigned/Signed Integers

* For n-bit unsigned integers: Range is 0 to $\left(2^{n}-1\right)$
* For n-bit signed integers: Range is -2^{n-1} to $\left(2^{n-1}-1\right)$
* Positive range: 0 to ($2^{n-1}-1$)
* Negative range: -2^{n-1} to -1

Storage Size	Unsigned Range	Signed Range
8 bits (byte)	0 to $\left(2^{8}-1\right)=255$	$-2^{7}=-128$ to $\left(2^{7}-1\right)=+127$
16 bits	0 to $\left(2^{16}-1\right)=65,535$	$-2^{15}=-32,768$ to $\left(2^{15}-1\right)=+32,767$
32 bits	0 to $\left(2^{32}-1\right)=$	
	$-2^{31}=-2,147,483,648$ to	
	0 to $\left(2^{64}-1\right)=$	
$18,446,744,073,709,551,615$	$\left(2^{31}-1\right)=+2,147,483,647$	
64 bits	$\left(2^{63}-1\right)=+9,223,372,036,854,775,808$ to	

Two's Complement Special Cases

```
* Case 1
    * 0 = 00000000
    * Bitwise not 11111111
    * Add 1 to LSB +1
    * Result 100000000
    * Overflow is ignored, so:
    *-0=0 V
* -128= 10000000
    * bitwise not 01111111
    * Add 1 to LSB +1
    * Result 10000000
    * Monitor MSB (sign bit)
    * It should change during negation
```


Table 1-3: Signed Binary Numbers

Table 1.3
Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	-	-

Arithmetic Addition

- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtain from the addition of the two numbers, including their sign bits. A carry out of the sign-bit position is discarded
- In order to obtain a correct answer, we must ensure that the result has a sufficient number of bits to accommodate the sum
- If we start with two n-bit numbers and the sum occupies n +1 bits, we say that an overflow occurs

Binary Addition

* Start with the least significant bit (rightmost bit)
* Add each pair of bits
* Include the carry in the addition, if present

Binary Subtraction

* When subtracting $A-B$, convert B to its 2's complement
* Add A to (-B)


```
carry: 1 1 1 1 1
    01001101
    1+1000110 (2's complement)
00010011 (same result)
```

* Final carry is ignored, because
\triangleleft Negative number is sign-extended with 1's
\diamond You can imagine infinite 1's to the left of a negative number
\diamond Adding the carry to the extended 1's produces extended zeros

Carry and Overflow

* Carry is important when ...
\diamond Adding or subtracting unsigned integers
\diamond Indicates that the unsigned sum is out of range
\triangleleft Either <0 or >maximum unsigned n-bit value
* Overflow is important when ...
\triangleleft Adding or subtracting signed integers
» Indicates that the signed sum is out of range
* Overflow occurs when
\triangleleft Adding two positive numbers and the sum is negative
\triangleleft Adding two negative numbers and the sum is positive
\triangleleft Can happen because of the fixed number of sum bits

Carry and Overflow Examples

* We can have carry without overflow and vice-versa
* Four cases are possible (Examples are 8-bit numbers)

0	0	0	0	1	1	1	1
0	0	0	0	1	0	0	0
0	0	0	1	0	1	1	1

Carry =0 Overflow $=0$

$$
\text { Carry = } 1 \quad \text { Overflow }=0
$$

Addition of Numbers in Twos Complement Representation

$\begin{aligned} 1001 & =-7 \\ +0101 & =5 \\ \hline 1110 & =-2 \end{aligned}$	$\begin{array}{rlr} 1100 & = & -4 \\ +0100 & = & 4 \\ 10000 & = & 0 \end{array}$
(a) $(-7)+(+5)$	(b) $(-4)+(+4)$
$\begin{array}{r} 0011=3 \\ +0100=4 \\ \frac{0111}{}=7 \end{array}$	$\begin{aligned} 1100 & =-4 \\ +1111 & =-1 \\ 11011 & =-5 \end{aligned}$
(c) $(+3)+(+4)$	(d) $(-4)+(-1)$
$\begin{aligned} & 0101=5 \\ &+0100=4 \\ & \frac{1001}{}=\text { overflow } \end{aligned}$	$\begin{aligned} 1001 & =-7 \\ +1010 & =-6 \\ 10011 & =\text { overflow } \end{aligned}$
(e) $(+5)+(+4)$	(f) $(-7)+(-6)$

Subtraction of Numbers in Twos Complement Representation (M-S)

$\begin{aligned} 0010 & =2 \\ +\frac{1001}{1011} & =-7 \\ & =-5 \end{aligned}$ (a) $\begin{array}{r} \mathrm{M}=2=0010 \\ \mathrm{~S}=7=0111 \\ -\mathrm{S}= \end{array}$	$\begin{aligned} 0101 & =5 \\ +1110 & =-2 \\ 10011 & =3 \end{aligned}$ $\text { (b) } \begin{aligned} & \mathrm{M}=5=0101 \\ & \mathrm{~S}=2=0010 \\ &-\mathrm{S}= \\ & 1110 \end{aligned}$
$\begin{aligned} 1011 & =-5 \\ +1110 & =-2 \\ 11001 & =-7 \end{aligned}$ (C) $\begin{array}{r} \mathrm{M}=-5=1011 \\ \mathrm{~S}=2=0010 \\ -\mathrm{S}= \\ 1110 \end{array}$	$\begin{aligned} 0101 & =5 \\ +0010 & =2 \\ 0111 & =7 \end{aligned}$ $\begin{aligned} \text { (d) } \left.\begin{array}{rl} \mathrm{M} & =5=0101 \\ \mathrm{~S} & =-2=1110 \\ -\mathrm{S} & = \\ 0 \end{array}\right)=10 \end{aligned}$
$\begin{aligned} 0111 & =7 \\ +\frac{0111}{1110} & =7 \\ & =\text { overflow } \end{aligned}$	$\begin{aligned} 1010 & =-6 \\ +1100 & =-4 \\ 10110 & =\text { overflow } \end{aligned}$
$\text { (e) } \begin{aligned} \mathrm{M} & =7=0111 \\ \mathrm{~S} & =-7=1001 \\ -\mathrm{S} & = \end{aligned}$	$\text { (f) } \begin{aligned} \mathrm{M} & =-6=1010 \\ \mathrm{~S} & =4=0100 \\ -\mathrm{S} & =1100 \end{aligned}$

Binary Codes

* How to represent characters, colors, etc?
* Define the set of all represented elements
* Assign a unique binary code to each element of the set
* Given n bits, a binary code is a mapping from the set of elements to a subset of the 2^{n} binary numbers
* Coding Numeric Data (example: coding decimal digits)
\triangleleft Coding must simplify common arithmetic operations
\diamond Tight relation to binary numbers
* Coding Non-Numeric Data (example: coding colors)
\triangleleft More flexible codes since arithmetic operations are not applied

Example of Coding Non-Numeric Data

* Suppose we want to code 7 colors of the rainbow
* As a minimum, we need 3 bits to define 7 unique values
* 3 bits define 8 possible combinations
* Only 7 combinations are needed
* Code 111 is not used
* Other assignments are also possible

Color	3-bit code
Red	000
Orange	001
Yellow	010
Green	011
Blue	100
Indigo	101
Violet	110

Minimum Number of Bits Required

* Given a set of M elements to be represented by a binary code, the minimum number of bits, n, should satisfy:
$2^{(n-1)}<M \leq 2^{n}$
$n=\left\lceil\log _{2} M\right\rceil$ where $\lceil x\rceil$, called the ceiling function, is the integer greater than or equal to x
* How many bits are required to represent 10 decimal digits with a binary code?
* Answer: $\left\lceil\log _{2} 10\right\rceil=4$ bits can represent 10 decimal digits

Decimal Codes

* Binary number system is most natural for computers
* But people are used to the decimal number system
* Must convert decimal numbers to binary, do arithmetic on binary numbers, then convert back to decimal
* To simplify conversions, decimal codes can be used
* Define a binary code for each decimal digit
* Since 10 decimal digits exit, a 4-bit code is used
* But a 4-bit code gives 16 unique combinations
* 10 combinations are used and 6 will be unused

Binary Coded Decimal (BCD)

* Simplest binary code for decimal digits
* Only encodes ten digits from 0 to 9
* BCD is a weighted code
* The weights are 8,4,2,1
* Same weights as a binary number
* There are six invalid code words 1010, 1011, 1100, 1101, 1110, 1111
* Example on BCD coding:
$13 \Leftrightarrow(00010011)_{\mathrm{BCD}}$

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
	1010
Unused	\cdots
	1111

Warning: Conversion or Coding?

* Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code
$* 13_{10}=(1101)_{2}$
$* 13 \Leftrightarrow(00010011)_{B C D}$

This is conversion
This is coding
$\%$ In general, coding requires more bits than conversion

* A number with n decimal digits is coded with $4 n$ bits in BCD

BCD Arithmetic

- Given a BCD code, we use binary arithmetic to add the digits:

8	1000	Eight
+5	$\frac{+0101}{13}$	Plus 5
101	is $13(>9)$	

- Note that the result is MORE THAN 9, so must be represented by two digits!
- To correct the digit, subtract 10 by adding 6 modulo 16 .

8	1000	Eight
$\frac{+5}{13}$	$\frac{+0101}{1101}$	Plus 5
	is $13(>9)$	
carry $=100110$	so add 6	
0001	leaving $3+$ cy	
	0011	Final answer (two digits)

BCD Addition Example

* Add $2905_{B C D}$ to $1897^{B C D}$ showing carries and digit corrections.

	1	1	1	
$1897_{B C D}$		0001	1000	1001
$2905_{B C D}$	$+\quad \underline{0010}$	$\underline{1001}$	$\underline{0000}$	$\underline{0101}$
0100	10010	1010	1100	
	$\underline{0000}$	0110	0110	0110
	4	8	0	2

Gray Code

* One bit changes from one code to the next code
* Different than Binary

Decimal	Gray	Binary
00	0000	0000
01	0001	0001
02	0011	0010
03	0010	0011
04	0110	0100
05	0111	0101
06	0101	0110
07	0100	0111
08	1100	1000
09	1101	1001
10	1111	1010
11	1110	1011
12	1010	1100
13	1011	1101
14	1001	1110
15	1000	1111

Other Decimal Codes

* BCD, 5421, 2421, and 84-2-1 are weighted codes
* Excess-3 is not a weighted code
- 2421, 8 4-2-1, and Excess-3 are self complementary codes

Decimal	BCD 8421	5421 code	2421 code	$84-2-1$ code	Excess-3 code
0	0000	0000	0000	0000	0011
1	0001	0001	0001	0111	0100
2	0010	0010	0010	0110	0101
3	0011	0011	0011	0101	0110
4	0100	0100	0100	0100	0111
5	0101	1000	1011	1011	1000
6	0110	1001	1100	1010	1001
7	0111	1010	1101	1001	1010
8	1000	1011	1110	1000	1011
9	1001	1100	1111	1111	1100
Unused	\cdots	\cdots	\cdots	\cdots	\cdots

Character Codes

* Character sets
\triangleleft Standard ASCII: 7-bit character codes (0 - 127)
\triangleleft Extended ASCII: 8-bit character codes (0-255)
\triangleleft Unicode: 16-bit character codes ($0-65,535$)
\triangleleft Unicode standard represents a universal character set
- Defines codes for characters used in all major languages
- Each character is encoded as 16 bits
« UTF-8: variable-length encoding used in HTML
- Encodes all Unicode characters
- Uses 1 byte for ASCII, but multiple bytes for other characters
* Null-terminated String
\diamond Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2	space	!	"	\#	\$	\%	\&	'	()	*	+	,	-	-	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	$=$	>	?
4	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	^	
6		a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7	p	q	r	s	t	u	v	w	x	Y	z	\{	I	\}	\sim	del

* Examples:
\triangleleft ASCII code for space character $=20$ (hex) $=32$ (decimal)
\diamond ASCII code for 'L' $=4 \mathrm{C}$ (hex) $=76$ (decimal)
\diamond ASCII code for 'a' = 61 (hex) $=97$ (decimal)

Control Characters

* The first 32 characters of ASCII table are used for control
* Control character codes = 00 to 1F (hexadecimal)
\diamond Not shown in previous slide
* Examples of Control Characters
\triangleleft Character 0 is the NULL character \Rightarrow used to terminate a string
\diamond Character 9 is the Horizontal Tab (HT) character
\diamond Character 0A (hex) $=10$ (decimal) is the Line Feed (LF)
\diamond Character 0D (hex) $=13$ (decimal) is the Carriage Return (CR)
\triangleleft The LF and CR characters are used together
- They advance the cursor to the beginning of next line
* One control character appears at end of ASCII table
\triangleleft Character 7F (hex) is the Delete (DEL) character

Binary Logic

* Deals with binary variables that take one of two discrete values
* Values of variables are called by a variety of very different names
\diamond high or low based on voltage representations in electronic circuits
\diamond true or false based on their usage to represent logic states
\diamond one (1) or zero (0) based on their values in Boolean algebra
\triangleleft open or closed based on its operation in gate logic
\triangleleft on or off based on its operation in switching logic
\diamond asserted or de-asserted based on its effect in digital systems

Basic Operations - AND

- Another Symbol is ".", e.g.

$$
\begin{gathered}
Z=X \text { AND } Y \text { or } \\
Z=X . Y \text { or even } \\
Z=X Y
\end{gathered}
$$

- X and Y are inputs, Z is an output
- Z is equal to 1 if and only if $X=1$ and $Y=1 ; Z=0$ otherwise (similar to the multiplication operation)
- Truth Table:
- Graphical symbol:

X	Y	$Z=X Y$
0	0	0
0	1	0
1	0	0
1	1	1

Basic Operations - OR

- Another Symbol is "+", e.g.

$$
\begin{gathered}
Z=X \text { OR } Y \text { or } \\
Z=X+Y
\end{gathered}
$$

- X and Y are inputs, Z is an output
- Z is equal to 0 if and only if $X=0$ and $Y=0 ; Z$
$=1$ otherwise (similar to the addition operation)
- Truth Table:
- Graphical symbol:

X	Y	$Z=X+Y$
0	0	0
0	1	1
1	0	1
1	1	1

Basic Operations - NOT

- Another Symbol is "-", e.g.

$$
\mathrm{Z}=\bar{X} \text { or } \quad \mathrm{Z}=\mathrm{X}^{\prime}
$$

- X is the input, Z is an output
- Z is equal to 0 if $X=1 ; Z=1$ otherwise
- Sometimes referred to as the complement or invert operation
- Truth Table:

X	$Z=X^{\prime}$
0	1
1	0

- Graphical symbol:

Two Input Gates - Timing Diagram

$x \quad 0$	1	1	0	0

| 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

AND: $x \cdot y$

OR: $x+y$

NOT: x^{\prime}
Copyright 02013 Pearson Education, publishing as Prentice Hall

Gates with multiple inputs

(a) Three-input AND gate

(b) Four-input OR gate

