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What you will I Learn in this Course?

 Towards the end of this course, you should be able to:

 Carry out arithmetic computation in various number systems

 Apply rules of Boolean algebra to simplify Boolean expressions

 Translate truth tables into equivalent Boolean expressions and logic 

gate implementations and vice versa

 Design efficient combinational and sequential logic circuit 

implementations from functional description of digital systems

 Use software tools to simulate and verify the operation of logic circuits
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1.1 Digital Systems

 Digital Computer

 Handheld Calculator

 Digital Watch



Is it Worth the Effort?

 Absolutely!

 Digital circuits are employed in the design of:

 Digital computers

 Data communication

 Digital phones

 Digital cameras

 Digital TVs, etc.

 This course provides the fundamental concepts and the basic 

tools for the design of digital circuits and systems  



How do Computers Represent Digits?

 Binary digits (0 and 1) are the simplest to represent

 Using electric voltage

 Used in processors and digital circuits

 High voltage = 1, Low voltage = 0

 Using electric charge

 Used in memory cells

 Charged memory cell = 1, discharged memory cell = 0

 Using magnetic field

 Used in magnetic disks, magnetic polarity indicates 1 or 0

 Using light

 Used in optical disks, optical lens can sense the light or not

High = 1

Low = 0

Unused
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Binary Numbers

 Each binary digit (called a bit) is either 1 or 0

 Bits have no inherent meaning, they can represent …

 Unsigned and signed integers

 Fractions

 Characters

 Images, sound, etc.

 Bit Numbering

 Least significant bit (LSB) is rightmost (bit 0)

 Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

1 0 0 1 1 1 0 1

27 26 25 24 23 22 21 20

01234567

Most

Significant Bit
Least

Significant Bit



Decimal Value of Binary Numbers

 Each bit represents a power of 2

 Every binary number is a sum of powers of 2

 Decimal Value = (dn-1  2n-1) + ... + (d1  21) + (d0  20)

 Binary (10011101)2 =

1 0 0 1 1 1 0 1

27 26 25 24 23 22 21 20

01234567

Some common 

powers of 2

27 + 24 + 23 + 22 + 1 = 157



Different Representations of Natural Numbers

XXVII Roman numerals (not positional)

27 Radix-10 or decimal number (positional)

110112 Radix-2 or binary number (also positional)

Fixed-radix positional representation with n digits

Number N in radix r = (dn–1dn–2 . . . d1d0)r

Nr Value = dn–1×r n–1 + dn–2×r n–2 + … + d1×r + d0

Examples: (11011)2 =

(2107)8 =

Positional Number Systems

1×24 + 1×23 + 0×22 + 1×2 + 1 = 27

2×83 + 1×82 + 0×8 + 7 = 1095



Convert Decimal to Binary

 Repeatedly divide the decimal integer by 2

 Each remainder is a binary digit in the translated value

 Example: Convert 3710 to Binary

37 = (100101)2

least significant bit

most significant bit

stop when quotient is zero



Decimal to Binary Conversion

 N = (dn-1  2n-1) + ... + (d1  21) + (d0  20)

 Dividing N by 2 we first obtain

 Quotient1 = (dn-1  2n-2) + … + (d2  2) + d1

 Remainder1 = d0

 Therefore, first remainder is least significant bit of binary number

 Dividing first quotient by 2 we first obtain

 Quotient2 = (dn-1  2n-3) + … + (d3  2) + d2

 Remainder2 = d1

 Repeat dividing quotient by 2

 Stop when new quotient is equal to zero

 Remainders are the bits from least to most significant bit



Popular Number Systems

 Binary Number System: Radix = 2

 Only two digit values: 0 and 1

 Numbers are represented as 0s and 1s

 Octal Number System: Radix = 8

 Eight digit values: 0, 1, 2, …, 7

 Decimal Number System: Radix = 10

 Ten digit values: 0, 1, 2, …, 9

 Hexadecimal Number Systems: Radix = 16

 Sixteen digit values: 0, 1, 2, …, 9, A, B, …, F

 A = 10, B = 11, …, F = 15

 Octal and Hexadecimal numbers can be converted easily to 
Binary and vice versa



Octal and Hexadecimal Numbers

 Octal = Radix 8

 Only eight digits: 0 to 7

 Digits 8 and 9 not used

 Hexadecimal = Radix 16

 16 digits: 0 to 9, A to F

 A=10, B=11, …, F=15

 First 16 decimal values (0 

to15) and their values in 

binary, octal and hex. 

Memorize table

Decimal

Radix 10

Binary

Radix 2

Octal

Radix 8

Hex

Radix 16

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F



Binary, Octal, and Hexadecimal

 Binary, Octal, and Hexadecimal are related:

Radix 16 = 24 and Radix 8 = 23

 Hexadecimal digit = 4 bits and Octal digit = 3 bits

 Starting from least-significant bit, group each 4 bits into a hex 

digit or each 3 bits into an octal digit

 Example: Convert 32-bit number into octal and hex

497A61BE Hexadecimal

32-bit binary00101001111001010110100011010111

42632550353 Octal



 Octal to Decimal: N8 = (dn-1  8n-1) +... + (d1  8) + d0

 Hex to Decimal: N16 = (dn-1  16n-1) +... + (d1  16) + d0

 Examples:

(7204)8 = (7  83) + (2  82) + (0  8) + 4 = 3716

(3BA4)16 = (3  163) + (11  162) + (10  16) + 4 = 15268

Converting Octal & Hex to Decimal



Converting Decimal to Hexadecimal

422 = (1A6)16
stop when 

quotient is zero

least significant digit

most significant digit

 Repeatedly divide the decimal integer by 16

 Each remainder is a hex digit in the translated value

 Example: convert 422 to hexadecimal

 To convert decimal to octal divide by 8 instead of 16



Important Properties

 How many possible digits can we have in Radix r ?

r digits: 0 to r – 1

What is the result of adding 1 to the largest digit in Radix r?

Since digit r is not represented, result is (10)r in Radix r

Examples: 12 + 1 = (10)2 78 + 1 = (10)8

910 + 1 = (10)10 F16 + 1 = (10)16

What is the largest value using 3 digits in Radix r?

In binary: (111)2 = 23 – 1

In octal: (777)8 = 83 – 1

In decimal: (999)10 = 103 – 1

In Radix r:

largest value = r3 – 1



Important Properties – cont’d

 How many possible values can be represented …

Using n binary digits?

Using n octal digits

Using n decimal digits?

Using n hexadecimal digits

Using n digits in Radix r ?

2n values: 0 to 2n – 1

10n values: 0 to 10n – 1

rn values: 0 to rn – 1

8n values: 0 to 8n – 1

16n values: 0 to 16n – 1



Representing Fractions

 A number Nr in radix r can also have a fraction part:

Nr = dn-1dn-2 … d1d0  . d-1 d-2 … d-m+1 d-m

 The number Nr represents the value:

Nr = dn-1 × rn-1 + … + d1 × r + d0  + (Integer Part)

d-1 × r -1 + d-2 × r -2 … + d-m × r –m (Fraction Part)

Integer Part Fraction Part

0 ≤ di < r

Radix Point

Nr =  +
j = -mi = 0

di × ri

i = n-1 j = -1

dj × rj



Examples of Numbers with Fractions

 (2409.87)10

 (1101.1001)2

 (703.64)8

 (A1F.8)16

 (423.1)5

 (263.5)6

= 2×103 + 4×102 + 9 + 8×10-1 + 7×10-2

= 23 + 22 + 20 + 2-1 + 2-4 = 13.5625

= 7×82 + 3 + 6×8-1 + 4×8-2 = 451.8125

= 10×162 + 16 + 15 + 8×16-1 = 2591.5

= 4×52 + 2×5 + 3 + 5-1 = 113.2

Digit 6 is NOT allowed in radix 6



Converting Decimal Fraction to Binary

 Convert N = 0.6875 to Radix 2

 Solution: Multiply N by 2 repeatedly & collect integer bits

 Stop when new fraction = 0.0, or when enough fraction bits 

are obtained

 Therefore, N = 0.6875 = (0.1011)2

 Check (0.1011)2 = 2-1 + 2-3 + 2-4 = 0.6875

Multiplication New Fraction Bit

0.6875 × 2 = 1.375 0.375 1

0.375 × 2 = 0.75 0.75 0

0.75 × 2 = 1.5 0.5 1

0.5 × 2 = 1.0 0.0 1

First fraction bit

Last fraction bit



Converting Fraction to any Radix r

 To convert fraction N to any radix r

Nr = (0.d-1 d-2 … d-m)r = d-1 × r -1 + d-2 × r -2 … + d-m × r –m

Multiply N by r to obtain d-1

Nr × r = d-1 + d-2 × r -1 … + d-m × r –m+1

 The integer part is the digit d-1 in radix r

 The new fraction is d-2 × r -1 … + d-m × r –m+1

 Repeat multiplying the new fractions by r to obtain d-2 d-3 ...

 Stop when new fraction becomes 0.0 or enough fraction digits 

are obtained 



More Conversion Examples 

 Convert N = 139.6875 to Octal (Radix 8)

 Solution: N = 139 + 0.6875 (split integer from fraction)

 The integer and fraction parts are converted separately

 Therefore, 139 = (213)8 and 0.6875 = (0.54)8

 Now, join the integer and fraction parts with radix point

N = 139.6875 = (213.54)8

Multiplication New Fraction Digit

0.6875 × 8 = 5.5 0.5 5

0.5 × 8 = 4.0 0.0 4

Division Quotient Remainder

139 / 8 17 3

17 / 8 2 1

2 / 8 0 2



Conversion Procedure to Radix r

 To convert decimal number N (with fraction) to radix r

 Convert the Integer Part

 Repeatedly divide the integer part of number N by the radix r and save 

the remainders. The integer digits in radix r are the remainders in 

reverse order of their computation. If radix r > 10, then convert all 

remainders > 10 to digits A, B, … etc.

 Convert the Fractional Part

 Repeatedly multiply the fraction of N by the radix r and save the 

integer digits that result.  The fraction digits in radix r are the integer 

digits in order of their computation. If the radix r > 10, then convert all 

digits > 10 to A, B, … etc.

 Join the result together with the radix point



Simplified Conversions

 Converting fractions between Binary, Octal, and Hexadecimal 

can be simplified

 Starting at the radix pointing, the integer part is converted 

from right to left and the fractional part is converted from left 

to right

 Group 4 bits into a hex digit or 3 bits into an octal digit

 Use binary to convert between octal and hexadecimal

AC35857

2547421627

Binary10101001111001010110100011010111 .

HexadecimalB . 8

Octal3 .

fraction: left to rightinteger: right to left



Important Properties of Fractions

 How many fractional values exist with m fraction bits?

2m fractions, because each fraction bit can be 0 or 1

What is the largest fraction value if m bits are used?

Largest fraction value = 2-1 + 2-2 + … + 2-m = 1 – 2-m

Because if you add 2-m to largest fraction you obtain 1

 In general, what is the largest fraction value if m fraction digits 

are used in radix r?

Largest fraction value = r -1 + r -2 + … + r -m = 1 – r -m

For decimal, largest fraction value = 1 – 10-m

For hexadecimal, largest fraction value = 1 – 16-m



Complements of Numbers

 Complements are used for simplifying the subtraction 
operation and for easy manipulation of certain logical rules 
and events

 Two types of complements for each base-r system:

 radix complements (r’s complements) 

 diminished radix complements ((r -1)’s complements)

 Diminished radix complement

 Given a number N in base r having n digits, the (r-1)’s complement 
of N is defined as (rn – 1) – N



Diminished Radix Complements

 For decimal number, r= 10, r-1=9, n=6

 9’s complement of 546700 = 999999 - 546700 = 453299

 9’s complement of 012398 = 999999 - 012398 = 987601

 For binary number, r = 2, r-1 = 1, n=7

 1’s complement of 1011000 = 1111111 - 1011000= 
0100111

 1’s complement of 0101101 = 1111111 - 0101101 = 
1010010



Radix Complements 

 The r’s complement of an n-digit number N is defined as 

 (rn – N, for N  0 and  0 for N = 0) 

 Examples:

1) 10’s complement of 546700 = 1000000 - 546700 = 453300

2) 10’s complement of 012398 = 1000000 - 012398 = 987602

3) 2’s complement of 1011000 = 10000000 - 1011000 = 0101000

4) 2’s complement of 0101101 = 10000000 - 0101101 = 1010011

 The 2’s complement can be derived by 1’s complement + 1 

 The complement of the complement restores the number to its 
original value

 If there is a radix point, the radix point is temporarily removed 
during the process, and restored in the same position afterwards



Subtraction with Complements

 Replace subtraction with addition

 Mr – Nr:  2’complement of Nr = rn – N  

 M + (rn – N) = M – N + rn

 If M  N, the end carry rn is discarded, and the result is M – N

 If M < N, there is no end carry and the sum equals rn – (N – M). 
Take the r’s complement if we obtain (N – M), which is –(M – N)



Examples

 E.g. using 10’s comp do 72532 – 3250

72532

+ 96750  10’s comp of 3250

1 69282

Answer = 69282

 E.g. Using 10’s comp do 3250 – 72532

03250

+ 27468  10’s comp of 72532

30718  no end carry

Answer = –(10’s comp of 30718) = – 69282



Examples

 Example using 9’s complement:

 do 72532 – 3250

72532

+ 96749  9’s comp of 3250

1 69281

+ 1 end around carry

69282

 do 3250 – 72532 

03250

+ 27467  9’s comp of 72532

30717  –(9’s comp of 30717) = –69282



Examples

00001101

-00000110

00000111

2’ compl. of 6 : 11111010

00001101

+ 11111010

1 00000111 (discard 28)

2’ compl. of 13: 11110011

00000110

+ 11110011

11111001  (2’ compl. of 7)

13-6

6-13



Signed Numbers

 Several ways to represent a signed number

 Sign-Magnitude

 1's complement

 2's complement

 Divide the range of values into 2 equal parts

 First part corresponds to the positive numbers (≥ 0)

 Second part correspond to the negative numbers (< 0)

 The 2's complement representation is widely used

 Has many advantages over other representations



Sign-Magnitude Representation

 Independent representation of the sign and magnitude

 Leftmost bit is the sign bit: 0 is positive and 1 is negative

 Using n bits, largest represented magnitude = 2n-1 – 1

Sign

Bit

bit

n-2

bit

2

bit

1

bit

0
. . .

Magnitude = n – 1 bits

n-bit register

10110100 10110101

Sign-magnitude

representation of +45

using 8-bit register

Sign-magnitude

representation of -45

using 8-bit register



Properties of Sign-Magnitude

 Two representations for zero: +0 and -0

 Symmetric range of represented values:

For n-bit register, range is from -(2n-1 – 1) to +(2n-1 – 1)

For example using 8-bit register, range is -127 to +127

 Hard to implement addition and subtraction

 Sign and magnitude parts have to processed independently

 Sign bit should be examined to determine addition or subtraction

Addition is converted into subtraction when adding numbers of 

different signs

 Need a different circuit to perform addition and subtraction

Increases the cost of the logic circuit



2’s Complement Representation

 Almost all computers today use 2’s complement to represent 

signed integers

 A simple definition for 2’s complement:

Given a binary number N

The 2’s complement of N = 1’s complement of N + 1

 Example: 2’s complement of (01101001)2 =

(10010110)2 + 1 = (10010111)2

 If N consists of n bits then

2’s complement of N = 2n – N



Computing the 2's Complement

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

starting value 001001002 = +36

step1: reverse the bits (1's complement) 110110112

step 2: add 1 to the value from step 1 +      12

sum = 2's complement representation 110111002 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least

significant 1

2’s complement of 110111002 (-36) = 001000112 + 1 = 001001002 = +36

The 2’s complement of the 2’s complement of N is equal to N



Unsigned and Signed Value

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

. . . . . . . . .

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

. . . . . . . . .

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

 Negative numbers

 Signed value = Unsigned value – 2n

 n = number of bits

 Negative weight for MSB

 Another way to obtain the signed 

value is to assign a negative weight 

to most-significant bit

= -128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1



Properties of the 2’s Complement

 The 2’s complement of N is the negative of N

 The sum of N and 2’s complement of N must be zero

The final carry is ignored

 Consider the 8-bit number N = 001011002 = +44

-44 = 2’s complement of N = 110101002

001011002 + 110101002 = 1 000000002 (8-bit sum is 0)

 In general: Sum of N + 2’s complement of N = 2n

where 2n is the final carry (1 followed by n 0’s)

 There is only one zero: 2’s complement of 0 = 0

Ignore final carry



Ranges of Unsigned/Signed Integers

 For n-bit unsigned integers: Range is 0 to (2n – 1)

 For n-bit signed integers: Range is -2n–1 to (2n–1 – 1)

 Positive range: 0 to (2n–1 – 1)

 Negative range: -2n–1 to -1

Storage Size Unsigned Range Signed Range

8 bits (byte) 0 to (28 – 1) = 255 -27 = -128 to (27 – 1) = +127

16 bits 0 to (216 – 1) = 65,535 -215 = -32,768 to (215 – 1) = +32,767

32 bits
0 to (232 – 1) =

4,294,967,295

-231 = -2,147,483,648 to

(231 – 1) = +2,147,483,647

64 bits
0 to (264 – 1) =

18,446,744,073,709,551,615

-263 = -9,223,372,036,854,775,808 to

(263 – 1) = +9,223,372,036,854,775,807



Two's Complement Special Cases

 Case 1

 0 =                00000000

 Bitwise not       11111111

 Add 1 to LSB              +1

 Result           1 00000000

 Overflow is ignored, so:

 - 0 = 0 

 -128 =           10000000

 bitwise not     01111111

 Add 1 to LSB            +1

 Result            10000000

 Monitor MSB (sign bit)

 It should change during negation



Table 1-3: Signed Binary Numbers



Arithmetic Addition

• The addition of two signed binary numbers with negative 
numbers represented in signed-2’s-complement form is 
obtain from the addition of the two numbers, including their 
sign bits. A carry out of the sign-bit position is discarded

• In order to obtain a correct answer, we must ensure that 
the result has a sufficient number of bits to accommodate 
the sum

• If we start with two n-bit numbers and the sum occupies n 
+ 1 bits, we say that an overflow occurs



Binary Addition

 Start with the least significant bit (rightmost bit)

 Add each pair of bits

 Include the carry in the addition, if present

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+
(54)
(29)
(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1



Binary Subtraction

When subtracting A – B, convert B to its 2's complement

 Add A to (–B)

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)

0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1  (same result)

 Final carry is ignored, because

 Negative number is sign-extended with 1's

 You can imagine infinite 1's to the left of a negative number

 Adding the carry to the extended 1's produces extended zeros

– +

borrow: carry:111 1111



Carry and Overflow

 Carry is important when …

 Adding or subtracting unsigned integers

 Indicates that the unsigned sum is out of range

 Either < 0 or >maximum unsigned n-bit value

 Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

 Overflow occurs when

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

 Can happen because of the fixed number of sum bits



0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143

(-113)
Carry = 0    Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1    Overflow = 1

111

Carry and Overflow Examples

We can have carry without overflow and vice-versa

 Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1    Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0    Overflow = 0

1



Addition of Numbers in Twos Complement Representation



Subtraction of Numbers in Twos Complement Representation 
(M – S)



Binary Codes

 How to represent characters, colors, etc?

 Define the set of all represented elements

 Assign a unique binary code to each element of the set

 Given n bits, a binary code is a mapping from the set of 

elements to a subset of the 2n binary numbers

 Coding Numeric Data (example: coding decimal digits)

 Coding must simplify common arithmetic operations

 Tight relation to binary numbers

 Coding Non-Numeric Data (example: coding colors)

 More flexible codes since arithmetic operations are not applied



 Suppose we want to code 7 colors of the rainbow

 As a minimum, we need 3 bits to define 7 unique values

 3 bits define 8 possible combinations

 Only 7 combinations are needed

 Code 111 is not used

 Other assignments are also possible

Example of Coding Non-Numeric Data

Color 3-bit code

Red 000

Orange 001

Yellow 010

Green 011

Blue 100

Indigo 101

Violet 110



 Given a set of M elements to be represented by a binary code, 

the minimum number of bits, n, should satisfy:

2(n - 1) < M ≤ 2n

n =  log2 M where  x , called the ceiling function, is the 

integer greater than or equal to x

 How many bits are required to represent 10 decimal digits with 

a binary code?

 Answer: log2 10  = 4 bits can represent 10 decimal digits 

Minimum Number of Bits Required



Decimal Codes

 Binary number system is most natural for computers

 But people are used to the decimal number system

Must convert decimal numbers to binary, do arithmetic on 

binary numbers, then convert back to decimal

 To simplify conversions, decimal codes can be used

 Define a binary code for each decimal digit

 Since 10 decimal digits exit, a 4-bit code is used

 But a 4-bit code gives 16 unique combinations

 10 combinations are used and 6 will be unused



Binary Coded Decimal (BCD)

 Simplest binary code for decimal digits

 Only encodes ten digits from 0 to 9

 BCD is a weighted code

 The weights are 8,4,2,1

 Same weights as a binary number

 There are six invalid code words

1010, 1011, 1100, 1101, 1110, 1111

 Example on BCD coding:

13   (0001 0011)BCD

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Unused
1010
···
1111



Warning: Conversion or Coding?

 Do NOT mix up conversion of a decimal number to a binary 

number with coding a decimal number with a binary code

 1310 = (1101)2 This is conversion

 13   (0001 0011)BCD This is coding

 In general, coding requires more bits than conversion

 A number with n decimal digits is coded with 4n bits in BCD



BCD Arithmetic

 Given a BCD code, we use binary arithmetic to add the digits:

8 1000 Eight

+5 +0101 Plus 5 

13 1101 is 13 (> 9)

 Note that the result is MORE THAN 9, so must be
represented by two digits!

 To correct the digit, subtract 10 by adding 6 modulo 16.

8 1000 Eight

+5 +0101 Plus 5 

13 1101 is 13 (> 9)

+0110 so add 6

carry = 1 0011 leaving 3 + cy

0001 | 0011 Final answer (two digits)



BCD Addition Example

 Add 2905BCD to 1897BCD showing carries and digit 
corrections.

1 1 1

1897BCD 0001    1000    1001    0111

2905BCD + 0010 1001 0000 0101

0100    10010    1010      1100

0000 0110 0110 0110

0100 1000    0000    0010
4 8 0 2



Gray Code

 One bit changes from
one code to the next
code

 Different than Binary

Decimal Gray
00 0000

01 0001

02 0011

03 0010

04 0110

05 0111

06 0101

07 0100

08 1100

09 1101

10 1111

11 1110

12 1010

13 1011

14 1001

15 1000

Binary
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111



Other Decimal Codes

 BCD, 5421, 2421, and 8 4 -2 -1 are weighted codes

 Excess-3 is not a weighted code

 2421, 8 4 -2 -1, and Excess-3 are self complementary codes

Decimal
BCD

8421

5421

code

2421

code

8 4 -2 -1

code

Excess-3

code

0 0000 0000 0000 0000 0011

1 0001 0001 0001 0111 0100

2 0010 0010 0010 0110 0101

3 0011 0011 0011 0101 0110

4 0100 0100 0100 0100 0111

5 0101 1000 1011 1011 1000

6 0110 1001 1100 1010 1001

7 0111 1010 1101 1001 1010

8 1000 1011 1110 1000 1011

9 1001 1100 1111 1111 1100

Unused ··· ··· ··· ··· ···



Character Codes

 Character sets

 Standard ASCII: 7-bit character codes (0 – 127)

 Extended ASCII: 8-bit character codes (0 – 255)

 Unicode: 16-bit character codes (0 – 65,535)

 Unicode standard represents a universal character set

 Defines codes for characters used in all major languages

 Each character is encoded as 16 bits

 UTF-8: variable-length encoding used in HTML

 Encodes all Unicode characters

 Uses 1 byte for ASCII, but multiple bytes for other characters

 Null-terminated String

 Array of characters followed by a NULL character



Printable ASCII Codes

0 1 2 3 4 5 6 7 8 9 A B C D E F

2 space ! " # $ % & ' ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

 Examples:

 ASCII code for space character = 20 (hex) = 32 (decimal)

 ASCII code for 'L' = 4C (hex) = 76 (decimal)

 ASCII code for 'a' = 61 (hex) = 97 (decimal)



Control Characters

 The first 32 characters of ASCII table are used for control

 Control character codes = 00 to 1F (hexadecimal)

 Not shown in previous slide

 Examples of Control Characters

 Character 0 is the NULL character  used to terminate a string

 Character 9 is the Horizontal Tab (HT) character

 Character 0A (hex) = 10 (decimal) is the Line Feed (LF)

 Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)

 The LF and CR characters are used together

 They advance the cursor to the beginning of next line

 One control character appears at end of ASCII table

 Character 7F (hex) is the Delete (DEL) character



Binary Logic

 Deals with binary variables that take one of two discrete 

values

 Values of variables are called by a variety of very different 

names

 high or low based on voltage representations in electronic circuits

 true or false based on their usage to represent logic states

 one (1) or zero (0) based on their values in Boolean algebra

 open or closed based on its operation in gate logic

 on or off based on its operation in switching logic

 asserted or de-asserted based on its effect in digital systems



Basic Operations - AND



Basic Operations - OR



Basic Operations - NOT



Two Input Gates – Timing Diagram 



Gates with multiple inputs


