Digital Systems and Binary Numbers

Aziz Qaroush

What you will I Learn in this Course?

- Towards the end of this course, you should be able to:
 - ♦ Carry out arithmetic computation in various number systems
 - ♦ Apply rules of Boolean algebra to simplify Boolean expressions
 - Translate truth tables into equivalent Boolean expressions and logic gate implementations and vice versa
 - Design efficient combinational and sequential logic circuit implementations from functional description of digital systems
 - ♦ Use software tools to simulate and verify the operation of logic circuits

1.1 Digital Systems

Digital Computer

Handheld Calculator

3.1415927 819 6 5 3 = 2:45

Digital Watch

Is it Worth the Effort?

- ✤ Absolutely!
- Digital circuits are employed in the design of:
 - ♦ Digital computers
 - \diamond Data communication
 - ♦ Digital phones
 - ♦ Digital cameras
 - ♦ Digital TVs, etc.
- This course provides the fundamental concepts and the basic tools for the design of digital circuits and systems

How do Computers Represent Digits?

- Binary digits (0 and 1) are the simplest to represent
- Using electric voltage
 - $\diamond\,$ Used in processors and digital circuits
 - \Rightarrow High voltage = 1, Low voltage = 0
- Using electric charge
 - \diamond Used in memory cells
 - \diamond Charged memory cell = 1, discharged memory cell = 0
- Using magnetic field
 - \diamond Used in magnetic disks, magnetic polarity indicates 1 or 0
- Using light
 - ♦ Used in optical disks, optical lens can sense the light or not

Binary Numbers

- Each binary digit (called a bit) is either 1 or 0
- ✤ Bits have no inherent meaning, they can represent …
 - ♦ Unsigned and signed integers
 - ♦ Fractions
 - ♦ Characters
 - \diamond Images, sound, etc.

Significant Bit Significant Bit 3 6 5 4 2 7 1 0 0 0 1 1 1 0 1 26 **2**³ **2**² **2**¹ 25 **2**⁴ 27 20

Least

Most

- Bit Numbering
 - ♦ Least significant bit (LSB) is rightmost (bit 0)
 - ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Decimal Value of Binary Numbers

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2

- Decimal Value = $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- Sinary $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

	7	6	5	4	3	2	1	0
Ę	1	0	0	1	1	1	0	1
	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

Some common powers of 2

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	2 ⁸	256
2^{1}	2	2 ⁹	512
2 ²	4	210	1024
2 ³	8	211	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	2 ¹⁵	32768

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with *n* digits

Number N in radix
$$r = (d_{n-1}d_{n-2} \dots d_1d_0)_r$$

 N_r Value = $d_{n-1} \times r^{n-1} + d_{n-2} \times r^{n-2} + \dots + d_1 \times r + d_0$

Examples: $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$

 $(2107)_8 = 2 \times 8^3 + 1 \times 8^2 + 0 \times 8 + 7 = 1095$

Convert Decimal to Binary

- Repeatedly divide the decimal integer by 2
- Each remainder is a binary digit in the translated value
- Example: Convert 37₁₀ to Binary

Decimal to Binary Conversion

$$\bigstar N = (d_{n-1} \times 2^{n-1}) + \dots + (d_1 \times 2^1) + (d_0 \times 2^0)$$

Dividing N by 2 we first obtain

- ♦ Quotient₁ = $(d_{n-1} \times 2^{n-2}) + ... + (d_2 \times 2) + d_1$
- \diamond Remainder₁ = d_0
- ♦ Therefore, first remainder is least significant bit of binary number
- Dividing first quotient by 2 we first obtain
 - ♦ Quotient₂ = $(d_{n-1} \times 2^{n-3}) + ... + (d_3 \times 2) + d_2$
 - ♦ Remainder₂ = d_1
- Repeat dividing quotient by 2
 - \diamond Stop when new quotient is equal to zero
 - ♦ Remainders are the bits from least to most significant bit

Popular Number Systems

- Binary Number System: Radix = 2
 - ♦ Only two digit values: 0 and 1
 - ♦ Numbers are represented as 0s and 1s
- Octal Number System: Radix = 8
 - ♦ Eight digit values: 0, 1, 2, ..., 7
- Decimal Number System: Radix = 10
 - ♦ Ten digit values: 0, 1, 2, ..., 9
- Hexadecimal Number Systems: Radix = 16
 - ♦ Sixteen digit values: 0, 1, 2, ..., 9, A, B, ..., F
 - ♦ A = 10, B = 11, ..., F = 15
- Octal and Hexadecimal numbers can be converted easily to Binary and vice versa

Octal and Hexadecimal Numbers

- Octal = Radix 8
- Only eight digits: 0 to 7
- Digits 8 and 9 not used
- Hexadecimal = Radix 16
- ✤ 16 digits: 0 to 9, A to F
- ✤ A=10, B=11, …, F=15
- First 16 decimal values (0 to15) and their values in binary, octal and hex.
 Memorize table

Decimal Radix 10	Binary Radix 2	Octal Radix 8	Hex Radix 16				
0	0000	0	0				
1	0001	1	1				
2	0010	2	2				
3	0011	3	3				
4	0100	4	4				
5	0101	5	5				
6	0110	6	6				
7	0111	7	7				
8	1000	10	8				
9	1001	11	9				
10	1010	12	A				
11	1011	13	В				
12	1100	14	С				
13	1101	15	D				
14	1110	16	E				
15	1111	17	F				

Binary, Octal, and Hexadecimal

Binary, Octal, and Hexadecimal are related:

Radix $16 = 2^4$ and Radix $8 = 2^3$

- Hexadecimal digit = 4 bits and Octal digit = 3 bits
- Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
- Example: Convert 32-bit number into octal and hex

3		5			3			0			5			5			2			3			6			2			4	Octal
1 1	1	. 0	1	0	1	1	0	0	0	1	0	1	1	0	1	0	1	0	0	1	1	1	1	0	0	1	0	1	00	32-bit binary
]	E]	3				1			(6			I	7			-	7			9	9			4	4	Hexadecimal

Converting Octal & Hex to Decimal

↔ Octal to Decimal: $N_8 = (d_{n-1} \times 8^{n-1}) + ... + (d_1 \times 8) + d_0$

↔ Hex to Decimal: $N_{16} = (d_{n-1} \times 16^{n-1}) + ... + (d_1 \times 16) + d_0$

Examples:

$$(7204)_8 = (7 \times 8^3) + (2 \times 8^2) + (0 \times 8) + 4 = 3716$$

 $(3BA4)_{16} = (3 \times 16^3) + (11 \times 16^2) + (10 \times 16) + 4 = 15268$

Converting Decimal to Hexadecimal

- Repeatedly divide the decimal integer by 16
- Each remainder is a hex digit in the translated value
- Example: convert 422 to hexadecimal

To convert decimal to octal divide by 8 instead of 16

Important Properties

- ✤ How many possible digits can we have in Radix r? r digits: 0 to r – 1
- ✤ What is the result of adding 1 to the largest digit in Radix *r*? Since digit *r* is not represented, result is $(10)_r$ in Radix *r* Examples: $1_2 + 1 = (10)_2$ $7_8 + 1 = (10)_8$

$$9_{10} + 1 = (10)_{10}$$
 $F_{16} + 1 = (10)_{16}$

♦ What is the largest value using 3 digits in Radix r?
In binary: $(111)_2 = 2^3 - 1$ In octal: $(777)_8 = 8^3 - 1$ In decimal: $(999)_{10} = 10^3 - 1$

Important Properties - cont'd

- How many possible values can be represented … 2^{n} values: 0 to $2^{n} - 1$ Using *n* binary digits? Using *n* octal digits Using *n* decimal digits?
 - Using *n* hexadecimal digits Using *n* digits in Radix *r*?

 8^{n} values: 0 to $8^{n} - 1$

 10^{n} values: 0 to $10^{n} - 1$

 16^{n} values: 0 to $16^{n} - 1$

 r^n values: 0 to $r^n - 1$

Representing Fractions

A number N_r in *radix* r can also have a fraction part:

$$N_{r} = \underbrace{d_{n-1}d_{n-2} \dots d_{1}d_{0}}_{\text{Integer Part}} \cdot \underbrace{d_{-1}d_{-2} \dots d_{-m+1}d_{-m}}_{\text{Fraction Part}} \quad 0 \le d_{i} < r$$

$$Radix \text{ Point}$$

• The number N_r represents the value:

$$N_{r} = d_{n-1} \times r^{n-1} + \dots + d_{1} \times r + d_{0} + \qquad \text{(Integer Part)}$$

$$d_{-1} \times r^{-1} + d_{-2} \times r^{-2} \dots + d_{-m} \times r^{-m} \qquad \text{(Fraction Part)}$$

$$N_{r} = \sum_{i=0}^{i=n-1} d_{i} \times r^{i} + \sum_{j=-m}^{j=-1} d_{j} \times r^{j}$$

Examples of Numbers with Fractions

- $(2409.87)_{10} = 2 \times 10^3 + 4 \times 10^2 + 9 + 8 \times 10^{-1} + 7 \times 10^{-2}$
- $(1101.1001)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-4} = 13.5625$
- $(703.64)_8 = 7 \times 8^2 + 3 + 6 \times 8^{-1} + 4 \times 8^{-2} = 451.8125$
- $(A1F.8)_{16} = 10 \times 16^2 + 16 + 15 + 8 \times 16^{-1} = 2591.5$
- $(423.1)_5 = 4 \times 5^2 + 2 \times 5 + 3 + 5^{-1} = 113.2$
- $(263.5)_6$ Digit 6 is NOT allowed in radix 6

Converting Decimal Fraction to Binary

- Convert N = 0.6875 to Radix 2
- Solution: Multiply *N* by 2 repeatedly & collect integer bits

Multiplication	New Fraction	Bit						
0.6875 × 2 = 1 .375	0.375	1 -	→ First fraction bit					
0.375 × 2 = <mark>0</mark> .75	0.75	0						
0.75 × 2 = 1.5	0.5	1						
0.5 × 2 = 1 .0	0.0	1 -	→ Last fraction bit					

- Stop when new fraction = 0.0, or when enough fraction bits are obtained
- Therefore, $N = 0.6875 = (0.1011)_2$
- ♦ Check $(0.1011)_2 = 2^{-1} + 2^{-3} + 2^{-4} = 0.6875$

Converting Fraction to any Radix r

rightarrow To convert fraction *N* to any radix *r*

 $N_r = (0.d_{-1} d_{-2} \dots d_{-m})_r = d_{-1} \times r^{-1} + d_{-2} \times r^{-2} \dots + d_{-m} \times r^{-m}$

• Multiply *N* by *r* to obtain d_{-1}

$$N_r \times r = d_{-1} + d_{-2} \times r^{-1} \dots + d_{-m} \times r^{-m+1}$$

- ↔ The integer part is the digit d_{-1} in radix r
- The new fraction is $d_{-2} \times r^{-1} \dots + d_{-m} \times r^{-m+1}$
- Repeat multiplying the new fractions by r to obtain d_{-2} d_{-3} ...
- Stop when new fraction becomes 0.0 or enough fraction digits are obtained

More Conversion Examples

- ✤ Convert *N* = 139.6875 to Octal (Radix 8)
- Solution: N = 139 + 0.6875 (split integer from fraction)
- The integer and fraction parts are converted separately

Division	Quotient	Remainder					
139 / 8	17	3					
17 / 8	2	1					
2/8	0	2					

Multiplication	New Fraction	Digit
0.6875 × 8 = <mark>5</mark> .5	0.5	5
$0.5 \times 8 = 4.0$	0.0	4

- ♦ Therefore, $139 = (213)_8$ and $0.6875 = (0.54)_8$
- Now, join the integer and fraction parts with radix point

 $N = 139.6875 = (213.54)_8$

Conversion Procedure to Radix r

- ✤ To convert decimal number N (with fraction) to radix r
- Convert the Integer Part
 - ♦ Repeatedly divide the integer part of number N by the radix r and save the remainders. The integer digits in radix r are the remainders in reverse order of their computation. If radix r > 10, then convert all remainders > 10 to digits A, B, ... etc.
- Convert the Fractional Part
 - ♦ Repeatedly multiply the fraction of *N* by the radix *r* and save the integer digits that result. The fraction digits in radix *r* are the integer digits in order of their computation. If the radix *r* > 10, then convert all digits > 10 to A, B, … etc.
- Join the result together with the radix point

Simplified Conversions

- Converting fractions between Binary, Octal, and Hexadecimal can be simplified
- Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
- Group 4 bits into a hex digit or 3 bits into an octal digit

← i	ntege	r: righ	t to le	eft —			fr	ac	tic	n:	lef	ft t	0	rig	ght	ť				
7	2	6	1	3	•	2	4			7		4			5			2	2	Octal
111	010	110	001	011	•	010	1	0	0	11	1	1	0	0	1	0	1	0	1	Binary
7	5	8	3	В	•	5			3	}		C			A		•		8	Hexadecimal

Use binary to convert between octal and hexadecimal

Important Properties of Fractions

- How many fractional values exist with *m* fraction bits?
 2^m fractions, because each fraction bit can be 0 or 1
- ✤ What is the largest fraction value if *m* bits are used? Largest fraction value = $2^{-1} + 2^{-2} + ... + 2^{-m} = 1 - 2^{-m}$ Because if you add 2^{-m} to largest fraction you obtain 1
- In general, what is the largest fraction value if *m* fraction digits are used in radix *r*?

Largest fraction value = $r^{-1} + r^{-2} + ... + r^{-m} = 1 - r^{-m}$

For decimal, largest fraction value = $1 - 10^{-m}$

For hexadecimal, largest fraction value = $1 - 16^{-m}$

Complements of Numbers

- Complements are used for simplifying the subtraction operation and for easy manipulation of certain logical rules and events
- Two types of complements for each *base-r* system:
 - radix complements (r's complements)
 - diminished radix complements ((r -1)'s complements)
- Diminished radix complement
 - Given a number N in base r having n digits, the (r-1)'s complement of N is defined as (rⁿ - 1) - N

Diminished Radix Complements

- ✤ For decimal number, r= 10, r-1=9, n=6
 - 9's complement of 546700 = 999999 546700 = 453299
 - 9's complement of 012398 = 999999 012398 = 987601
- For binary number, r = 2, r-1 = 1, n=7
 - 1's complement of 1011000 = 1111111 1011000= 0100111
 - 1's complement of 0101101 = 1111111 0101101 = 1010010

Radix Complements

- The r's complement of an n-digit number N is defined as
 - $(r^n N, \text{ for } N \neq 0 \text{ and } 0 \text{ for } N = 0)$
- Examples:
 - 1) 10's complement of 546700 = 1000000 546700 = 453300
 - 2) 10's complement of 012398 = 1000000 012398 = 987602
 - 3) 2's complement of 1011000 = 10000000 1011000 = 0101000
 - 4) 2's complement of 0101101 = 10000000 0101101 = 1010011
- The 2's complement can be derived by 1's complement + 1
- The complement of the complement restores the number to its original value
- If there is a radix point, the radix point is temporarily removed during the process, and restored in the same position afterwards

Subtraction with Complements

- ✤ Replace subtraction with addition
- ♦ $M_r N_r$: 2'complement of $N_r = r^n N$
 - $\bullet M + (r^n N) = M N + r^n$
- ♦ If $M \ge N$, the end carry r^n is discarded, and the result is M N
- ✤ If M < N, there is no end carry and the sum equals rⁿ (N M). Take the r's complement if we obtain (N - M), which is -(M - N)

Examples

E.g. using 10's comp do 72532 – 3250 72532

- + <u>96750</u> \rightarrow 10's comp of 3250
 - <u>1</u>69282

Answer = 69282

- **E.g.** Using 10's comp do 3250 72532 03250
 - + 27468 → 10's comp of 72532 30718 → no end carry

Answer = -(10's comp of 30718) = -69282

Examples

Example using 9's complement:

• do 72532 - 3250

72532

+ <u>96749</u> → 9's comp of 3250

<u>1</u>69281

+ <u>1</u> \rightarrow end around carry

69282

• do 3250 - 72532

03250

+ 27467 → 9's comp of 72532 30717 → -(9's comp of 30717) = -69282

Examples

$\begin{array}{cccc} 13-6 \\ & 00001101 \\ & -00000110 \\ \hline 00000111 \\ \end{array} \begin{array}{c} 2' \text{ compl. of } 6:11111010 \\ 000001101 \\ + 11111010 \\ \hline 1 00000111 \\ \end{array}$ (discard 28)

6-13

2' compl. of 13: 11110011 00000110 + 11110011 11111001 (2' compl. of 7)

Signed Numbers

Several ways to represent a signed number

- ♦ Sign-Magnitude
- ♦ 1's complement
- ♦ 2's complement
- Divide the range of values into 2 equal parts
 - ↔ First part corresponds to the positive numbers (≥ 0)
 - \diamond Second part correspond to the negative numbers (< 0)
- The 2's complement representation is widely used
 - ♦ Has many advantages over other representations

Sign-Magnitude Representation

- Independent representation of the sign and magnitude
- Leftmost bit is the sign bit: 0 is positive and 1 is negative
- ♦ Using *n* bits, largest represented magnitude = $2^{n-1} 1$

Sign-magnitude representation of +45 using 8-bit register

Sign-magnitude representation of -45 using 8-bit register

Properties of Sign-Magnitude

- Two representations for zero: +0 and -0
- Symmetric range of represented values:

For n-bit register, range is from $-(2^{n-1} - 1)$ to $+(2^{n-1} - 1)$ For example using 8-bit register, range is -127 to +127

Hard to implement addition and subtraction

- ♦ Sign and magnitude parts have to processed independently
- Sign bit should be examined to determine addition or subtraction
 Addition is converted into subtraction when adding numbers of
 different signs
- Need a different circuit to perform addition and subtraction
 Increases the cost of the logic circuit

2's Complement Representation

- Almost all computers today use 2's complement to represent signed integers
- ✤ A simple definition for 2's complement:

Given a binary number N

The 2's complement of N = 1's complement of N + 1

• Example: 2's complement of $(01101001)_2 =$

 $(10010110)_2 + 1 = (10010111)_2$

✤ If N consists of n bits then

2's complement of $N = 2^n - N$

Computing the 2's Complement

starting value	$00100100_2 = +36$
step1: reverse the bits (1's complement)	11011011 ₂
step 2: add 1 to the value from step 1	+ 1 ₂
sum = 2's complement representation	$11011100_2 = -36$

2's complement of 11011100_2 (-36) = $00100011_2 + 1 = 00100100_2 = +36$

The 2's complement of the 2's complement of N is equal to N

Another way to obtain the 2's complement:	Binary Value
Start at the least significant 1	= 00100100 significant 1
Leave all the 0s to its right unchanged	2's Complement
Complement all the bits to its left	= 11011100

Unsigned and Signed Value

 Positive numbers Signed value = Unsigned value 	8-bit Binary value	ι
V Signed value – Unsigned value	00000000	
Negative numbers	0000001	
♦ Signed value = Unsigned value – 2^n	00000010	
\Rightarrow <i>n</i> = number of bits		
Negative weight for MSB	01111110	
6 6	01111111	
 Another way to obtain the signed value is to assign a negative weight 	10000000	
to most-significant bit	10000001	
-128 64 32 16 8 4 2 1	11111110	
= -128 + 32 + 16 + 4 = -76	11111111	

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Properties of the 2's Complement

- ✤ The 2's complement of *N* is the negative of *N*
- The sum of N and 2's complement of N must be zero
 The final carry is ignored
- Consider the 8-bit number $N = 00101100_2 = +44$

-44 = 2's complement of $N = 11010100_2$ 00101100₂ + 11010100₂ = **1** 00000000₂ (8-bit sum is 0)

- ✤ In general: Sum of N + 2's complement of N = 2ⁿ where 2ⁿ is the final carry (1 followed by n 0's)
- There is only one zero: 2's complement of 0 = 0

Ranges of Unsigned/Signed Integers

- ♦ For *n*-bit unsigned integers: Range is 0 to $(2^n 1)$
- ♦ For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1} 1)$
- ♦ Positive range: 0 to $(2^{n-1} 1)$
- Negative range: -2^{n-1} to -1

Storage Size	Unsigned Range	Signed Range
8 bits (byte)	0 to $(2^8 - 1) = 255$	$-2^7 = -128$ to $(2^7 - 1) = +127$
16 bits	0 to $(2^{16} - 1) = 65,535$	$-2^{15} = -32,768$ to $(2^{15} - 1) = +32,767$
32 bits	0 to $(2^{32} - 1) =$	-2 ³¹ = -2,147,483,648 to
	4,294,967,295	$(2^{31} - 1) = +2,147,483,647$
64 bits	0 to (2 ⁶⁴ – 1) =	-2 ⁶³ = -9,223,372,036,854,775,808 to
	18,446,744,073,709,551,615	$(2^{63}-1) = +9,223,372,036,854,775,807$

Two's Complement Special Cases

Case 1

- ✤ 0 = 00000000
- Bitwise not 11111111
- ♦ Add 1 to LSB +1
- ✤ Result 1 0000000
- Overflow is ignored, so:
- $-0 = 0 \sqrt{}$

✤ -128 = 1000000

- bitwise not 01111111
- ♦ Add 1 to LSB +1
- ✤ Result 1000000
- Monitor MSB (sign bit)
- It should change during negation

Table 1-3: Signed Binary Numbers

Table 1.3Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Arithmetic Addition

- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtain from the addition of the two numbers, including their sign bits. A carry out of the sign-bit position is <u>discarded</u>
- In order to obtain a correct answer, we must ensure that the result has a sufficient number of bits to accommodate the sum
- If we start with two n-bit numbers and the sum occupies n
 + 1 bits, we say that an overflow occurs

Binary Addition

- Start with the least significant bit (rightmost bit)
- ✤ Add each pair of bits
- Include the carry in the addition, if present

Binary Subtraction

When subtracting A – B, convert B to its 2's complement
Add A to (–B)

Final carry is ignored, because

- ♦ Negative number is sign-extended with 1's
- ♦ You can imagine infinite 1's to the left of a negative number
- ♦ Adding the carry to the extended 1's produces extended zeros

Carry and Overflow

- ✤ Carry is important when …
 - ♦ Adding or subtracting unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Either < 0 or >maximum unsigned *n*-bit value
- ✤ Overflow is important when …
 - ♦ Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range
- Overflow occurs when
 - \diamond Adding two positive numbers and the sum is negative
 - \diamond Adding two negative numbers and the sum is positive
 - \diamond Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples are 8-bit numbers)

Addition of Numbers in Twos Complement Representation

1001 = -7 + 0101 = 5 = -2 (a) (-7) + (+5)	1100 = -4 + 0100 = 4 = 0 $10000 = 0$ (b) (-4) + (+4)
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$1100 = -4 \\ +1111 = -1 \\ 11011 = -5 \\ (d) (-4) + (-1)$
0101 = 5 + 0100 = 4 1001 = Overflow (e)(+5)+(+4)	$1001 = -7 + 1010 = -6 \\ 10011 = Overflow \\ (f)(-7) + (-6)$

Subtraction of Numbers in Twos Complement Representation (M - S)

$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(a) $M = 2 = 0010$	(b) $M = 5 = 0101$
s = 7 = 0111	S = 2 = 0010
-s = 1001	-S = 1110
$1011 = -5 \\ +1110 = -2 \\ 11001 = -7$	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(c) $M = -5 = 1011$	(d) $M = 5 = 0101$
s = 2 = 0010	S = -2 = 1110
-s = 1110	-S = 0010
$\begin{array}{rcrr} 0111 &=& 7\\ + & 0111 \\ 1110 &=& 7\\ \hline & 1110 &=& 0 \\ \end{array}$	1010 = -6 + <u>1100</u> = -4 10110 = Overflow
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

Binary Codes

- ✤ How to represent characters, colors, etc?
- Define the set of all represented elements
- Assign a unique binary code to each element of the set
- Given n bits, a binary code is a mapping from the set of elements to a subset of the 2ⁿ binary numbers
- Coding Numeric Data (example: coding decimal digits)
 - ♦ Coding must simplify common arithmetic operations
 - ♦ Tight relation to binary numbers
- Coding Non-Numeric Data (example: coding colors)
 - ♦ More flexible codes since arithmetic operations are not applied

Example of Coding Non-Numeric Data

- Suppose we want to code 7 colors of the rainbow
- ✤ As a minimum, we need 3 bits to define 7 unique values
- ✤ 3 bits define 8 possible combinations
- Only 7 combinations are needed
- Code 111 is not used
- Other assignments are also possible

Color	3-bit code
Red	000
Orange	001
Yellow	010
Green	011
Blue	100
Indigo	101
Violet	110

Minimum Number of Bits Required

Given a set of *M* elements to be represented by a binary code, the minimum number of bits, *n*, should satisfy:

 $2^{(n-1)} < M \leq 2^n$

 $n = \lceil \log_2 M \rceil$ where $\lceil x \rceil$, called the ceiling function, is the integer greater than or equal to x

How many bits are required to represent 10 decimal digits with a binary code?

• Answer: $\log_2 10 = 4$ bits can represent 10 decimal digits

Decimal Codes

- Binary number system is most natural for computers
- But people are used to the decimal number system
- Must convert decimal numbers to binary, do arithmetic on binary numbers, then convert back to decimal
- To simplify conversions, decimal codes can be used
- Define a binary code for each decimal digit
- Since 10 decimal digits exit, a 4-bit code is used
- But a 4-bit code gives 16 unique combinations
- ✤ 10 combinations are used and 6 will be unused

Binary Coded Decimal (BCD)

- Simplest binary code for decimal digits
- Only encodes ten digits from 0 to 9
- BCD is a weighted code
- The weights are 8,4,2,1
- Same weights as a binary number
- There are six invalid code words

1010, 1011, 1100, 1101, 1110, 1111

- Example on BCD coding:
 - $13 \Leftrightarrow (0001 \ 0011)_{BCD}$

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
	1010
Unused	•••
	1111

Warning: Conversion or Coding?

- Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code
- $\bigstar 13_{10} = (1101)_2$ This is conversion
- ♦ 13 \Leftrightarrow (0001 0011)_{BCD}
 This is coding
- ✤ In general, coding requires more bits than conversion
- ✤ A number with *n* decimal digits is coded with 4*n* bits in BCD

BCD Arithmetic

• Given a BCD code, we use binary arithmetic to add the digits:

8	1000	Eight
+5	+0101	Plus 5
13	1101	is 13 (> 9)

- Note that the result is MORE THAN 9, so must be represented by two digits!
- To correct the digit, subtract 10 by adding <u>6 modulo 16</u>.

8	1000	Eight
<u>+5</u> 13	+0101	Plus 5
13	1101	is 13 (> 9)
	+0110	so add 6
са	rry = 1 0011	leaving 3 + cy
	0001 0011	Final answer (two digits)

BCD Addition Example

✤ Add 2905_{BCD} to 1897_{BCD} showing carries and digit corrections.

		1	1	1	
1897 _{BCD}		0001	1000	1001	0111
2905 _{BCD}	+	<u>0010</u>	<u>1001</u>	<u>0000</u>	<u>0101</u>
		0100	10010	1010	1100
		0000	0110	0110	0110
		0100 4	1000 8	0000 0	0010 2

Gray Code

- One bit changes from one code to the next code
- Different than Binary

Decimal	Gray	Binary
00	0000	0000
01	0001	0001
02	0011	0010
03	0010	0011
04	0110	0100
05	0111	0101
06	0101	0110
07	0100	0111
08	1100	1000
09	1101	1001
10	1111	1010
11	1110	1011
12	1010	1100
13	1011	1101
14	1001	1110
15	1000	1111

Other Decimal Codes

- ✤ BCD, 5421, 2421, and 8 4 -2 -1 are weighted codes
- Excess-3 is not a weighted code
- ✤ 2421, 8 4 -2 -1, and Excess-3 are self complementary codes

Decimal	BCD 8421	5421 code	2421 code	8 4 -2 -1 code	Excess-3 code
0	0000	0000	0000	0000	0011
1	0001	0001	0001	0111	0100
2	0010	0010	0010	0110	0101
3	0011	0011	0011	0101	0110
4	0100	0100	0100	0100	0111
5	0101	1000	1011	1011	1000
6	0110	1001	1100	1010	1001
7	0111	1010	1101	1001	1010
8	1000	1011	1110	1000	1011
9	1001	1100	1111	1111	1100
Unused	••••				

Character Codes

Character sets

- ♦ Standard ASCII: 7-bit character codes (0 127)
- ♦ Extended ASCII: 8-bit character codes (0 255)
- \diamond Unicode: 16-bit character codes (0 65,535)
- ♦ Unicode standard represents a universal character set
 - Defines codes for characters used in all major languages
 - Each character is encoded as 16 bits
- ♦ UTF-8: variable-length encoding used in HTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters
- Null-terminated String
 - ♦ Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
2	space	!	TT	#	\$	olo	&	V	()	*	+	,	_	•	/
3	0	1	2	3	4	5	6	7	8	9	•	;	<	=	>	?
4	0	Α	В	С	D	E	F	G	H	I	J	K	L	М	N	0
5	P	Q	R	S	Т	U	v	W	х	Y	Z	[\]	^	_
6	`	a	b	C	d	е	f	g	h	i	j	k	1	m	n	0
7	p	q	r	ຮ	t	u	v	W	x	У	Z	{		}	~	DEL

Examples:

- \Rightarrow ASCII code for space character = 20 (hex) = 32 (decimal)
- \Rightarrow ASCII code for 'L' = 4C (hex) = 76 (decimal)
- \Rightarrow ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- The first 32 characters of ASCII table are used for control
- Control character codes = 00 to 1F (hexadecimal)
 - \diamond Not shown in previous slide
- Examples of Control Characters
 - \diamond Character 0 is the NULL character \Rightarrow used to terminate a string
 - ♦ Character 9 is the Horizontal Tab (HT) character
 - ♦ Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
 - ♦ Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
 - ♦ The LF and CR characters are used together
 - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
 - ♦ Character 7F (hex) is the Delete (DEL) character

Binary Logic

- Deals with binary variables that take one of two discrete values
- Values of variables are called by a variety of very different names
 - ♦ high or low based on voltage representations in electronic circuits
 - \diamond true or false based on their usage to represent logic states
 - \diamond one (1) or zero (0) based on their values in Boolean algebra
 - \diamond open or closed based on its operation in gate logic
 - \diamond on or off based on its operation in switching logic
 - ♦ asserted or de-asserted based on its effect in digital systems

Basic Operations - AND

• Another Symbol is ".", e.g.

$$Z = X AND Y or$$

 $Z = X.Y or even$
 $Z = XY$

- X and Y are inputs, Z is an output
- Z is equal to 1 if and only if X = 1 and Y = 1; Z = 0 otherwise (similar to the multiplication operation)
- Truth Table:
- Graphical symbol:

Basic Operations - OR

• Another Symbol is "+", e.g.

$$Z = X \text{ OR } Y \text{ or}$$
$$Z = X + Y$$

- X and Y are inputs, Z is an output
- Z is equal to 0 if and only if X = 0 and Y = 0; Z
 = 1 otherwise (similar to the addition operation)
- Truth Table:
- Graphical symbol:

Х	Y	Z=X+Y
0	0	0
0	1	1
1	0	1
1	1	1

Basic Operations - NOT

• Another Symbol is "", e.g.

$$Z = \overline{X}$$
 or $Z = X'$

- X is the input, Z is an output
- Z is equal to 0 if X = 1; Z = 1 otherwise
- Sometimes referred to as the complement or invert operation
- Truth Table:

Х	Z=X'
0	1
1	0

• Graphical symbol:

Two Input Gates – Timing Diagram

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Gates with multiple inputs

Copyright ©2013 Pearson Education, publishing as Prentice Hall